Climate Mitigation, Adaptation and Resilience on Natural & Working Lands

PRESENTATION TO THE CLIMATE COUNCIL

JANUARY 4, 2021

Dr. Alexandra Kosiba, Climate Forester, Dept. Forests, Parks and Recreation, Agency of Natural Resources

Ryan Patch, Water Quality Assistant Director, Agency of Agriculture, Food and Markets
Climate Mitigation, Adaptation and Resilience on Natural & Working Lands

1. What are natural and working lands (NWL) and why are they important?
2. Terminology and concepts
3. The forest carbon cycle and its relevance to climate change
4. Forest sector carbon storage and fluxes
5. Opportunities and challenges for forest carbon mitigation and climate change adaptation
6. The importance of wetlands
7. Mitigation, adaptation, and resilience in agricultural systems
Natural & Working Lands (NWL) cover 94% of Vermont

*Other perennial vegetation includes grasslands, shrub/scrublands, and turf

Data source: 2016 National Land Cover Database
NWL can mitigate climate change

NWL are impacted by climate change

“Natural Climate Solutions”

Requires adaptation strategies to promote resilience

NWL are impacted by climate change
NWLS provide vital ecosystem goods and services.
The forest carbon cycle

Carbon cycle diagram:
- CO₂
- O₂
- Tree uses carbon for energy
- Tree uses carbon to make new roots, leaves, branches, bark, fruit, etc.
- Tree or parts die
- Decompose
- Some carbon transferred to soil
- Harvest or Disturbance
- CO₂

Circles denote atmospheric gas.
Carbon vs. Carbon Dioxide

Plants use the carbon in CO$_2$ to make sugars. When a plant releases stored carbon through respiration, decomposition, or combustion, the carbon rejoins oxygen to make CO$_2$, which is released back to the atmosphere.

Carbon in living and dead plants and in soils are often expressed as carbon dioxide equivalent (CO$_2$e) for easier comparison to other sinks and sources of GHGs.

The CO$_2$ equivalent of wood is more than its weight:

- 1 MT of dry wood = 0.5 MT carbon = 1.8 MT carbon dioxide taken out of the atmosphere
- CO$_2$ molecule is 3.7x heavier than a carbon atom
Forests and other NWL can mitigate climate change through the sequestration and storage of atmospheric CO$_2$.

Carbon sequestration
The process of removing CO$_2$ from the atmosphere and storing it in another form that cannot immediately be released (like wood). Expressed as a negative value per unit time (MT CO$_2$e/year).

Carbon emission
CO$_2$ can be released to the atmosphere through decomposition, respiration, or combustion. Expressed as a positive value per unit time (MT CO$_2$e/year).

Carbon storage
The total amount of carbon contained in a plant-based ecosystem or in a part of the system (trees, soil, leaf litter, dead wood).

Net flux
The rate of change in stored carbon.
Carbon sink

Net flux < 0
The forest sequestered more CO₂ than it emitted.
The total carbon storage of the forest will increase by the amount sequestered.

Carbon source

Net flux > 0
The forest emitted more CO₂ than it sequestered.
The total carbon storage of the forest will decrease by the amount emitted.

Forests and other NWL can be carbon sinks or carbon sources depending on the balance between sequestration and emissions.

Image: Naveen Nkadlaveni
Forest carbon pools

Vermont’s Forest Carbon Storage Pools

- **Soil**: 55%
- **Aboveground Biomass**: 30%
- **Belowground Biomass**: 6%
- **Dead Wood**: 3%
- **Litter**: 6%

Dead wood
Standing dead trees, downed logs, and large branches.

Aboveground Biomass
Live trees and shrubs

Belowground Biomass
Live roots

Litter
Leaves and fine branches

Soil
All organic materials, except roots

Harvested Wood Products
HWP in use
HWP in landfill

Data source: Domke et al. (2020); data shown for 2018
Vermont’s forests and HWP store about 1,920,000,000 MT CO$_2$e – if emitted, would be equivalent to 200X our current annual emissions.

Harvested wood products (HWP) in use and in landfill are two additional carbon pools that add 125 MMT CO$_2$e to VT’s forest carbon sink.

While VT’s forest and HWP store a great deal of carbon, atmospheric CO$_2$ concentration is affected by changes in the size of the carbon pools.

Each year, Forests and HWP pools are net sinks – but that is not a guarantee.

Data sources: Domke et al. (2020) and Dugan et al. (2020); data shown for 2018
In addition to storing carbon in HWP, we can reduce emissions by substituting HWP for high emissions products, like fossil fuels, plastics, concrete, and steel.

Sawnwood
- Additional carbon storage pool
- Substitution benefits: 1 MT avoids 0.54-0.8 MT CO$_2$ emissions compared to steel and concrete

Bioenergy
- Substitution benefits: 1 MT avoids 0.49-0.89 MT CO$_2$ emissions compared to fossil fuels

Substitution estimates: Sathre and O’Connor (2010) and Smyth et al. (2017)
Sources of annual forest carbon flux

Recall that negative values indicate carbon sequestration (net carbon uptake = carbon sink) and positive values indicate carbon emissions (net carbon release = carbon source)

Forests
Harvested wood products
Trees in towns and cities
Land use conversion

Photos: Elm tree, Msact (2019); Development, Foster (2018)
Across the VT forest sector in 2018, both carbon sinks and sources exist

-5.2 MMT CO₂e/year

-0.5 Municipal trees

-0.1 Cropland converted to forest

-0.1 Developed land converted to forest

0.5 Municipal trees

0.1 Cropland converted to forest

0.6 Forest converted to development

0.6 Forest converted to cropland

-1.5 HWP substitution benefits

2.1 HWP emissions

Note that these forest sector values are not included in the Vermont GHG Inventory.
When we combine the sinks and sources estimated for 2018, the forest sector took in ~45% of state annual emissions.

Net sequestration by forests and municipal trees: -5.7

Net emissions from land-use change: 1.0

Net emissions from HWP: 0.61

Estimated VT total emissions*: 9.02

Approx. net of all emissions: 4.9

*Data source for state emissions: VT ANR GHG Inventory (2020), estimate for 2018

Note that these forest sector values are not included in the Vermont GHG Inventory*
Opportunities to maintain and increase the mitigation potential of the forest sector

1. Maintain or increase carbon sequestration of forests through good stewardship and ecological silviculture.

2. Maintain or increase carbon sequestration of municipal trees through good stewardship and additional tree planting.

3. Reduce carbon emissions from land-use conversion.

4. Decrease net HWP emissions by increasing use of wood as substitutes.
Challenges to using forests to meet Vermont’s emission reduction goals

- Vermont’s forests are highly variable and dynamic
 - Difficult to estimate carbon fluxes without high costs
 - Remote sensing techniques developing
- 80% of forestland is privately owned
- Cannot double count forest carbon
 - Carbon offset projects in VT have already accounted for >20K acres
- Must also account for fluxes from other NWL
 - We have less data for wetlands, farmland, other types of NWL (shrublands, grasslands)
- Increasing carbon storage vs. avoiding carbon emissions
There are two types of climate change mitigation strategies for the forest sector and other NWL:

Enhance the terrestrial carbon sink

- Increase carbon storage through active sequestration of atmospheric CO$_2$ and storage in carbon pools

 Examples:
 - Plant trees
 - Use ecological silviculture
 - Harvest and make durable wood products

Reduce the source of atmospheric carbon

- Avoid emitting additional CO$_2$ into the atmosphere

 Examples:
 - Keep forests as forests
 - Substitute wood products for higher GHG products
 - Reduce soil erosion
Mitigation

Reductions in emissions and preservation/enhancement of natural systems to sequester and store carbon.

Joint Mitigation and Adaptation Strategies

Avoid deforestation
Reforestation/afforestation
Ecological silviculture
Protect water and soils
Durable wood products
Wood products as substitutes
Selling forest carbon

Adaptation

Reducing vulnerability and advancing resilience through enhancements to, or avoiding degradation of, natural systems.

Promote forest stewardship
Forestland protection
Promote connectivity
Strategies to promote the mitigation and adaptation potential of wetlands

Due to slow decomposition, wetland soils can contain 2-3 times more carbon than forest soils.

And wetlands provide vital water filtration and flood control.

But we lack data on the fluxes in wetland carbon pools.
Vermont’s Current Greenhouse Gas (GHG) Emissions Profile

Figure 13: Vermont Agricultural Sector GHG Emissions (1990 – 2016).
Natural & Working Lands (NWL) cover 94% of Vermont

*Other perennial vegetation includes grasslands, shrub/scrublands, and turf

Data source: 2016 National Land Cover Database; Images courtesy FPR
Percentage decrease in total cropland in Vermont from 1987 to 2017

<table>
<thead>
<tr>
<th>Census Category</th>
<th>1987</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farms</td>
<td>5,877</td>
<td>6,808</td>
</tr>
<tr>
<td>Acres Land Managed by Farms</td>
<td>1,407,868</td>
<td>1,193,437</td>
</tr>
<tr>
<td>Total Cropland</td>
<td>707,970</td>
<td>479,680</td>
</tr>
</tbody>
</table>

Source: 1987 & 2017 USDA NASS Ag Census
Land managed by farms in Vermont, 2017

- Total Harvested Cropland: 37%
- Total Woodland: 47%
- Permanent Pasture: 10%
- Land in infrastructure, ponds, etc.: 6%

Total Land in Agriculture: 310,127 ac.

- Harvested Corn (ac.): 90,216
- Harvested Hayland (ac.): 12,778
- Harvested Other Crops (ac.): 4,804
- Harvested Soybeans (ac.): 310,127

Source: 2017 USDA NASS Ag Census
Importance of Organic Matter

Composition of soil organic matter.

Mycorrhizae are symbiotic associations between fungi and plant roots. The mycorrhizal fungus colonizes plant roots and allows the plant access to more nutrients.

Source: Dr. Heather Darby, Digging-In, UVM Extension NW Crops & Soils Program
1. Disturb the soil as little as possible
2. Grow as many different species of plants as practical
3. Keep living plants in the soil as much as possible
4. Keep the soil covered year-round
Examples of Soil Health Practices - Mitigation

<table>
<thead>
<tr>
<th>What is it?</th>
<th>What does it do?</th>
<th>How does it help?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservation Crop Rotation
Growing a diverse number of crops in a planned sequence in order to increase soil organic matter and biodiversity in the soil.</td>
<td>• Increases nutrient cycling
• Manages plant pest (weeds, insects, and diseases)
• Reduces sheet, rill, and wind erosion
• Holds soil moisture
• Adds diversity so soil microbes can thrive</td>
<td>• Maximize nutrients
• Decreases use of pesticides
• Improves water quality
• Conserves water
• Improves plant production</td>
</tr>
<tr>
<td>Cover Crop
An un-harvested crop grown as part of planned rotation to provide conservation benefits to the soil.</td>
<td>• Increases soil organic matter
• Prevents soil erosion
• Conserves soil moisture
• Increases nutrient cycling
• Provides nitrogen for plant use
• Suppresses weeds
• Reduces compaction</td>
<td>• Improves crop production
• Improves water quality
• Conserves water
• Maximizes nutrients
• Decreases use of pesticides
• Improves water efficiency to crop</td>
</tr>
<tr>
<td>No Till
A way of growing crops without disturbing the soil through tillage.</td>
<td>• Improves water holding capacity of soils
• Increases organic matter
• Reduces soil erosion
• Reduces energy use
• Decreases compaction</td>
<td>• Improves water efficiency
• Conserves water
• Improves crop production
• Improves water quality
• Saves renewable resources
• Improves air quality
• Increases productivity</td>
</tr>
</tbody>
</table>

Source: USDA NRCS
Examples of Soil Health Practices - Mitigation

Mulch Tillage
Using tillage methods where the soil surface is disturbed but maintains a high level of crop residue on the surface.
- Reduces soil erosion from wind and rain
- Increases soil moisture for plants
- Reduces energy use
- Increases soil organic matter
- Improves water quality
-Conserves water
-Saves renewable resources
- Improves air quality
- Improves crop production

Mulching
Applying plant residues or other suitable materials to the soil surface to compensate for loss of residue due to excessive tillage.
- Reduces erosion from wind and rain
- Moderates soil temperatures
- Increases soil organic matter
- Controls weeds
- Conserves soil moisture
- Reduces dust
- Improves water quality
- Improves plant productivity
- Increases crop production
- Reduces pesticide usage
- Conserves water
- Improves air quality

Nutrient Management
Managing soil nutrients to meet crop needs while minimizing the impact on the environment and the soil.
- Increases plant nutrient uptake
- Improves the physical, chemical, and biological properties of the soil
- Budgets, supplies, and conserves nutrients for plant production
- Reduces odors and nitrogen emissions
- Improves water quality
- Improves plant production
- Improves air quality

Source: USDA NRCS
Importance of Organic Matter – Mitigation, Adaptation, Resilience

healthy soil has amazing water-retention capacity.

Every 1% increase in organic matter results in as much as 25,000 gal of available soil water per acre.

Source: Kansas State Extension Agronomy e-Updates, Number 357, July 6, 2012

Source: USDA NRCS
Source: North Dakota State University, Soil Health Minute: Rainfall Simulator; https://youtu.be/Y4pwNIPX4AA
Results of Ag Nonpoint Source Program

Acres of Ag Conservation Practice Implementation through VAAFM Programs, by State Fiscal Year

- Aeration
- Precision Agriculture
- Other Practices
- Riparian Forest Buffer
- Rotational Grazing
- Manure Injection
- Conservation Tillage
- Cover Crop
- Production Area Compliance

Graph showing acres of Ag conservation practice implementation through VAAFM programs by state fiscal year, with data points for 2016 to 2020.
6 V.S.A. § 4962(2) "Regenerative farming" means a series of cropland management practices that:

(A) contributes to generating or building soils and soil fertility and health;
(B) increases water percolation, increases water retention, and increases the amount of clean water running off farms;
(C) increases biodiversity and ecosystem health and resiliency; and
(D) sequesters carbon in agricultural soils.

6 V.S.A. § 4802(4) "Healthy soil" means soil that has a well-developed, porous structure, is chemically balanced, supports diverse microbial communities, and has abundant organic matter.
Section 3. SOIL CONSERVATION PRACTICE AND PAYMENT FOR ECOSYSTEM SERVICES WORKING GROUP

(a) The Secretary of Agriculture, Food and Markets shall convene a Soil Conservation Practice and Payment for Ecosystem Services Working Group to recommend financial incentives designed to encourage farmers in Vermont to implement agricultural practices that exceed the requirements of 6 V.S.A. chapter 215 and that improve soil health, enhance crop resilience, increase carbon storage and stormwater storage capacity, and reduce agricultural runoff to waters. The Working Group shall:
Mitigation Summary

Example Mitigation Strategies:
1. Dietary adjustments
2. Improved genetics
3. Improving reproductive performance

Example Mitigation Strategies:
1. Manure Injection
2. Waste Storage Digestion / Energy Production
3. Covering Waste Storage Facilities

Example Mitigation Strategies:
1. Reduced Tillage
2. Cover Crop
3. Crop Rotation

Source: Kuhn
Source: VAAFM
Source: VT-DEC
Conservation Practices can Influence Soil Carbon Levels
Agricultural land stores carbon in soils, and farmers can apply practices which can increase soil carbon levels in soils (cover cropping, no-till, management intensive grazing are examples of practices which can achieve this),

Technologies
Technologies can – and have been – applied to farms in Vermont to convert methane emissions from farms into energy through anaerobic digestion, and

Whole Farm Considerations
Farms in Vermont manage significant tracts of forest in addition to cropland: According to the 2017 USDA NASS Ag Census, farms in Vermont manage 479,680 acres of total cropland and 503,496 acres of woodland that is not pastured. Land conservation programs are important to conserve land in agriculture.
Summary

- Vermont’s Natural and Working lands can help us mitigate climate change, but they are also impacted by climate change.
- Currently, the forest sector provides a substantial carbon benefit, but this is not a guarantee in the future.
- Increasing the organic matter content of agricultural soils offers important agronomic benefits, in addition to the carbon benefit.
- To account for the NWL carbon sink we need to be able to measure it and manage it well.
- NWL present opportunities for joint mitigation and adaptation that can increase the resilience of natural and built systems.
QUESTIONS?

Alexandra Kosiba, Climate Forester, Dept. Forests, Parks and Recreation, Agency of Natural Resources, Alexandra.Kosiba@Vermont.gov

Ryan Patch, Water Quality Assistant Director, Agency of Agriculture, Food and Markets, Ryan.Patch@Vermont.gov